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Endowing a computer with 
human perceptual skills, 
such as understanding spo-
ken language or recognizing 

faces, has been on the agenda of com-
puter science since the era of vacuum 
tubes and punch cards. For decades, 
progress was slow and successes were 
few. But now you can have a conversa-
tion with your cell phone about tomor-
row’s weather or last night’s baseball 
scores. And Facebook and Google+ 
recognize faces well enough to suggest 
that you “tag” your friends in photos.

What accounts for these sudden 
breakthroughs in pattern recognition 
by machines? There is no single an-
swer. A variety of algorithmic and sta-
tistical ideas have played a part, along 
with more powerful hardware. But 
one suite of techniques merits special 
mention. A scheme called deep learning 
has achieved impressive performance 
on several pattern-analysis tasks. Pro-
grams for deep learning are also known 
as deep neural networks, because they are 
constructed as multiple layers of pro-
cessing elements analogous to the neu-
rons of the nervous system.

The deep methods have a role in 
some well-known speech-recognition 
systems, such as Apple’s Siri and the 
Google search-by-voice service. They 
are also leading the way in aspects of 
computer vision. Apart from percep-
tual tasks, deep learning is proving 
adept at data mining: extracting mean-
ingful patterns from large data sets.

How do the deep programs work? 
Oddly enough, no one can answer 

this question in full detail. A distinc-
tive feature of neural networks is that 
the designer or programmer does not 
directly specify all the particulars of a 
computation. Instead, the neural net 
is “trained” by exposure to thousands 
of examples, and it adjusts its internal 
parameters to maximize its own suc-
cess. When the training is complete, we 
have a machine that can answer ques-
tions, but we don’t necessarily know 
how it computes the answers. I find 
this situation mildly frustrating. On the 
other hand, it’s a predicament I am fa-
miliar with at the most intimate level. I, 
too, understand speech and recognize 
faces—and I can’t explain how I do it.

A Network for Stripes
Before diving into deep neural net-
works, let’s play in the shallow end of 
the pool, with a network that recog-
nizes simple geometric patterns. The 
patterns come from an image sensor 
like the one in a digital camera, only 
simpler: It ignores color and shades of 
gray, merely reporting whether a pixel 
is light or dark. Signals from the pixels 
go to the input layer of the neural net-
work. Each neuron in this layer receives 
signals from four pixels arranged in a 
2×2 square; every such square patch 
in the sensor array reports to its own 
neuron. (The patches overlap.)

A 2×2 window of black or white 
pixels can display 16 different motifs:

The neurons of the input layer are pro-
grammed to recognize a specific subset 
of these patterns. If a neuron sees one 
of the designated motifs in its square 
patch, the neuron “fires,” producing a 

positive output; otherwise it stays si-
lent. Signals from the input layer are 
passed on to a single output neuron, 
which fires only if all the input neurons 
fire. Thus the output neuron reports a 
unanimous yea-or-nay judgment.

This 2 × 2, black-or-white, all-or-
nothing device is just about the sim-
plest conceivable neural network, and 
yet it can do some interesting things. 
Let the input neurons respond positive-
ly to these four motifs (and no others):

Such a network recognizes any pat-
tern of vertical stripes, regardless of 
the stripes’ width. It’s a wallpaper 
sensor. Other subsets of the 16 motifs 
yield networks triggered by horizontal 
stripes or by diagonals. The ability to 
detect stripes in various orientations 
is intriguing in that the primary visual 
cortex of the mammalian brain is full 
of stripe-sensitive neurons.

This rudimentary neural network 
can also be programmed to detect pat-
terns other than stripes. You might try 
to find a set of motifs that picks out 
rectangles. But there are also tasks the 
system cannot perform. For example, 
no network of this kind can distinguish 
squares from other rectangles.

The Learning Algorithm
The automaton we have just assembled 
is not a learning machine. The patterns 
it detects are predetermined, like the 
hard-wired behaviors of a primitive or-
ganism. Learning requires some form 
of corrective feedback. 

Suppose you want to build a stripe 
detector not by hand-picking the mo-
tifs to accept but by letting the system 
learn them. You project a series of im-
ages onto the sensor, some of which 
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should be recognized as vertical-stripe 
patterns and some not. If the network 
gives the correct answer for an image, 
do nothing. If the system makes the 
wrong choice, there must be at least 
one neuron in the input layer that re-
sponded incorrectly, either accepting 
a motif it should have rejected, or vice 
versa. Find all such errant neurons, and 
instruct them to reverse their classifica-
tion of the current motif.

With this feedback mechanism, we 
have a machine that improves with 
practice—but we are still a long ways 
from a device that can learn to recog-
nize human faces. Given this network 
architecture—an input layer and a 
single output neuron—the repertory 
of recognized patterns can never ex-
tend beyond rather simple geometric 
figures. Moreover, the system’s all-or-
nothing logic makes it brittle and in-
flexible. A single stray pixel can alter 
the machine’s verdict, and it can be 
taught to recognize just one set of pat-
terns at a time. More useful would be 
a classifier that could look at a variety 
of patterns and assign them to groups.

Going Deeper
Our little neural network can be aug-
mented in several ways. To begin with, 
the simple yes-or-no choices can be 
extended to a continuous range of val-
ues. Signals passing from one neuron 
to another are multiplied by a coef-
ficient, called a weight, with a value 
between –1 and +1. The receiving neu-
ron adds up all the weighted inputs, 
and calculates an output based on the 
sum. Signals with a positive weight 
are excitatory; those with a negative 
weight are inhibitory. Heavily weight-
ed signals (whether positive or nega-
tive) count for more than those with 
weights near zero. Learning becomes 
a matter of adjusting the weights in 
response to corrective feedback.

The geometric scope of the input 
neurons can also be enlarged. Each 
neuron might collect inputs from a 
larger patch, or the inputs might come 
from regions scattered across the sen-
sor. In the limiting case, every input 
neuron receives signals from every 
sensor element.

Finally, the two-layer architecture of 
the network can be expanded. Insert-
ing intermediate layers of neurons—
known as hidden layers because they 
don’t directly communicate with the 
outside world—lifts many restrictions 
on the computational capabilities of 

neural networks. Indeed, this is what 
makes the networks “deep.”

Deep networks are more versatile 
and potentially more powerful. They 
are also more complex and computa-
tionally demanding. It’s not just that 
there are more neurons and more con-
nections between them. The big chal-
lenge is organizing the learning pro-
cess. Suppose a certain hidden-layer 
neuron has sent the wrong signal to 
the output layer, causing the system to 
mix up Elvis Presley and Elmer Fudd. 
You might “punish” that behavior by 
decreasing the weight of the Elvis con-
nection. But maybe the error should 
really be attributed to the input neu-
rons that feed information to the hid-
den neuron. It’s not obvious how to 
apportion blame in this situation.

From Perceptrons to Connectionism
Artificial neural networks have had a 
roller coaster history. In the 1950s Frank 
Rosenblatt described a class of devices 
he called perceptrons. To show how they 
work, he built an electromechanical 
contraption with 400 photocells as sen-
sors and motor-driven potentiometers 
to adjust the weights. The stripe-detect-
ing network described above is a partic-
ularly simple instance of a perceptron. 
(This specific model was introduced in 
1984 by A. K. Dewdney.)

In 1969 Marvin Minsky and Sey-
mour Papert published a critique of 

two-layer perceptrons, giving math-
ematical proofs of their limitations. For 
example, they showed that no network 
without hidden layers can distinguish 
connected geometric figures from 
those made up of two or more discon-
nected pieces. Beyond the proofs, Min-
sky and Papert offered a harsh assess-
ment of the entire neural network field, 
remarking that much writing on the 
subject was “without scientific value.”

The Minsky-Papert impossibility 
proofs applied only to networks with-
out hidden layers. Rosenblatt and oth-
ers were already experimenting with 
multilayer devices, but they had trouble 
finding efficient learning rules. In the 
aftermath of these setbacks, neural net-
work research languished for a decade. 
And there was a further misfortune: 
Rosenblatt died in a boating accident in 
1971, on his 43rd birthday.

Interest in neural networks revived 
in the 1980s under the new brand 
name of connectionism. A key event 
was the discovery of an algorithm 
known as back-propagation, which 
allowed efficient training of neural 
networks with three layers: an input 
layer, an output layer, and a single hid-
den layer. The technique was first for-
mulated by Paul J. Werbos and was 
popularized by David E. Rumelhart, 
Geoffrey E. Hinton, and Ronald J. Wil-
liams, who demonstrated its success-
ful application in 1986.

input layer
(4 × 4 neurons)

sensor
(5 × 5 pixels)

output neuron

+1 +1

+1

+1 +1accepted motifs:

A rudimentary neural network called a perceptron recognizes oriented stripes in an image. 
The sensor for this example is a 5 × 5 array of pixels. Each 2 × 2 subarray communicates with a 
neuron in the input layer; four of these overlapping 2 × 2 squares are distinguished by color. An 
input neuron responds positively (with a +1 output) if and only if the underlying pixel array 
matches one of four motifs. The output neuron fires only if the input neurons are unanimous.
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As the name suggests, back- 
propagation reverses the flow of in-
formation through the network. Error-
correcting signals travel back from the 
output layer to the hidden layer, then 
continue on to the input layer. Within 
each layer, the corrective adjustment is 
determined by the principle of steepest 
descent: Incorrect weights are nudged 
in the direction that causes the greatest 
change in the output. The process is not 
guaranteed to find the best possible as-
signment of weights—it can get trapped 
in a local optimum—but experiments 
suggested that densely connected net-
works seldom succumb to this hazard.

In principle, back-propagation can be 
applied to networks of any depth, but 
with multiple hidden layers the proce-
dure tends to bog down. There is also 
the risk of “overfitting,” where the net-
work learns the training cases too well, 
responding to irrelevant details that are 
not present outside the training set.

The neural network roller coaster did 
not plunge steeply after climbing to the 
connectionist peak in the 1980s. Never-
theless, 20 years passed before the cur-
rent frenzy over deep learning began.

Multilayer Networks
The new deep networks are not just 
deeper; they are larger in all dimen-
sions, with more neurons, more layers, 
and more connections. A project called 
Google Brain, begun in 2011, had a mil-
lion neurons and a billion connections. 
(After perusing 10 million images from 

YouTube, Google Brain concluded that 
the Internet is full of cats.)

A prerequisite for bigger networks 
is more hardware. Google Brain ran 
on a cluster of 16,000 computers. But 
hardware alone is not enough to tame 
the complexities of training multilayer 
networks. Another contribution is the 

concept of pretraining, which addresses 
the problem of how to set the initial 
weights in a network. If you start by 
making all the weights very small, it 
takes forever to reach a state where 
anything interesting happens. On the 
other hand, large initial weights raise 
the likelihood of getting trapped pre-
maturely in a local optimum. Pretrain-
ing primes the system to follow a more 
fruitful path.

Among all the ideas that animate the 
deep learning movement, the one I find 
most evocative comes from Hinton. He 
suggests that the networks must not 
only perceive and reason but also sleep 
and dream. The dreaming allows the 
system to augment its own training set.

Underlying this metaphor is the 
idea that the layers of a neural net-
work represent information at progres-

sively higher levels of abstraction. In 
face recognition the bottom level holds 
the raw input data—an array of pixels. 
The lower neural layers capture sim-
ple, local features of the image, such as 
oriented edges or corners. Activity in 
the higher levels represents larger and 
more complex features. At some point 
we encounter eyes and noses, and es-
tablish spatial relations between them. 
At the top is the concept of the face 
itself. In the artificial network as in the 
human mind, something suddenly 
clicks and the identification tumbles 
out: Aunt Em.

In people, this process also works in 
reverse. The mere thought of Aunt Em 
conjures up a vision of her face. Hinton 
devised a mechanism by which neu-
ral networks could also have visions 
and fantasies. All it requires is mak-
ing the connections between layers bi
directional. In the conventional phase 
of the training process, information 
moves from bottom to top, assembling 
higher-level abstractions out of the bits 
and pieces found in the lower layers. In 
dreaming, the higher-level representa-
tions are projected downward through 
the layers, creating lower-level real-
izations of each concept. Connection 
weights are interpreted as probabilities 
to guide the process. At the bottom of 

the stack is an imaginary portrait. Gen-
erating such faux images contributes to 
learning in the same way that analyz-
ing real images does. Hinton refers to 
the two-phase training regime as the 
sleep-wake cycle.

Deep Networks and Social Networks
After decades as one of those peren-
nial technologies of tomorrow, neural 
networks have suddenly arrived in 
the here and now. Speech recognition 
was the first area where they attracted 
notice. The networks are applied to 
the acoustic part of speech processing, 
where a continuous sound wave is dis-
sected into a sequence of discrete pho-
nemes. (The phonemes are assembled 
into words and sentences by another 
software module, which is not based 
on neural networks.) In 2009 Hinton 

input
layer

�rst
hidden
layer

second
hidden
layer

output
layer

outputs

inputs

A perennial technology of tomorrow, neural 
networks have arrived in the here and now.

Multilayer neural networks can learn to recognize features at several levels of abstraction, 
from geometric motifs such as oriented stripes, through simple shapes, to complex objects 
such as human faces. Connections between layers of neurons can be either excitatory or inhib-
itory and also differ in their “weight,” or influence on the receiving neuron. In this schematic 
diagram, the properties of the connections are encoded in the color and thickness of lines.
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and his student George Dahl set an 
accuracy record for the transcription of 
a standard corpus of recorded speech. 

A current focus is object recognition 
in still and video images. The comput-
er vision community holds an annual 
contest for this task, asking contestants 
to classify about a million images in 
1,000 categories. In 2012 Hinton and 
two colleagues entered the contest 
with an eight-layer neural net having 
650,000 neurons and 60 million adjust-
able parameters. They won with an er-
ror rate of about 15 percent; the runner 
up scored 26 percent.

These successes have attracted at-
tention outside the academic world. 
As noted, speech recognition networks 
are already at work in voice-input de-
vices and services. Google has adapted 
the object recognition techniques for 
image searches. A number of data-
mining tools for tasks such as recom-
mending products to customers are 
built on deep networks. There will 
doubtless be more such applications 
in the near future. Several of the se-
nior research figures in deep learning 
(including Hinton) are working with 
Google, Facebook, and other compa-
nies ready to make large investments 
in the technology.

Neural Nets and Neurology
These triumphs of neural networks 
might seem to be the definitive answer 
to the Minsky-Papert critique of percep-
trons. Yet some of the questions raised 
50 years ago have not gone away.

The foundation of the neural net-
work methods is almost entirely em-
pirical; there’s not much deep theory 
to direct deep learning. At best we 
have heuristic guidelines for choosing 
the number of layers, the number of 
neurons, the initial weights, the learn-
ing protocol. The impressive series of 
contests won by Hinton and his col-
leagues testifies to the effectiveness 
of their methods, but it also suggests 
that newcomers may have a hard time 
mastering those methods.

An immense space of network archi-
tectures remains to be explored, with 
a multitude of variations in topology, 
circuitry, and learning rules. Trial and 
error is not a promising tactic for find-
ing the best of those alternatives.

Or is it? Trial and error certainly had 
a major role in building the most suc-
cessful of all neural networks—those 
in our heads. And the long dialogue 
between biological and engineered ap-

proaches has been fascinating if not al-
ways fruitful. The biological model sug-
gests ways to build better connectionist 
computers; the successes and failures 
of computational models inform our 
efforts to understand the brain. 

In both of these projects, we have 
a ways to go. A machine that learns 
to distinguish cows from camels and 
cats from canines is truly a marvel. Yet 
any toddler can do the same without a 
training set of a million images.
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