
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

22 American Scientist, Volume 102 © 2014 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

The year is 2024, and I have just
brought home my first quan-
tum computer. When I plug
it in and switch it on, the ma-

chine comes to life with a soft, breathy
whisper from the miniature cryogenic
unit. A status screen tells me I have
at my disposal 1,024 qubits, or quan-
tum bits, offering far more potential
for high-speed calculation than all the
gigabits and terabytes of a convention-
al computer. So I sit down to write my
first quantum program.

And that’s where I get stuck every
time I run through this daydream. I
know a little about the basic principles
of quantum computation, but I’ve nev-
er had a clear vision of what it would
be like to write and run programs on a
quantum computer. Can I express my
ideas in a familiar programming lan-
guage, with all the usual algorithmic
idioms, such as loops and if-then-else
statements? Or is the experience going
to be completely new and alien—like
quantum mechanics itself?

Most of what I’ve read tends to sup-
port the new-and-alien thesis. The
protocol for solving a problem with a
quantum computer is often described
like this: Prepare a set of qubits in a
suitable initial state, apply a specified
series of operations, then measure
the final state of the qubits. If all goes
well, the measurement will yield the
answer to the problem. To me, this
process doesn’t sound like computer
programming; it sounds like running
a physics experiment. I yearn for some
other way of describing the computa-
tion, closer to my accustomed habits
of thought.

Evidently I am not alone in this sen-
timent. Several high-level program-
ming languages for quantum comput-
ers have been developed, even though
the computers themselves don’t yet
exist. I have been exploring two of
these languages, QCL and Quipper,
which are surprisingly rich and full-
featured. The languages provide a
glimpse of how programming might
be done when my kiloqubit computer
finally arrives.

Abstracted to Distraction
My complaint that quantum computa-
tion seems too much like a laboratory
experiment is a little unfair. Classical
computing has the same complexion
if you examine it closely enough. Add-
ing a column of numbers in a spread-
sheet could be described as preparing
a set of bits in the appropriate initial
state, applying the summation opera-
tor, and measuring the final state of the
bits. But no one thinks of the process in
those primitive terms.

Computer science has evolved a hi-
erarchy of conceptual layers that hide
the details of layers below them. At
the bottom are physical entities such
as transistors and electronic circuitry.
Next come logic gates (AND, OR, etc.),
which operate on symbols (true and
false, 0 and 1) rather than voltages and
currents. The gates are assembled into
registers, adders, and the like; then an
instruction set defines commands for
manipulating data within these com-
ponents. Finally, the details of the in-
struction set are hidden by the con-
structs of a higher-level programming
language: procedures, iterations, ar-
rays, lists, and so on.

Creating complex software would be
beyond human abilities without the ab-
straction barriers that separate these lay-
ers. It’s just not possible to think about

the design of a large program in terms of
electric currents flowing through billions
of transistors. As Alfred North White-
head wrote, “Civilisation advances by
extending the number of important op-
erations which we can perform without
thinking about them.”

But the barriers are seldom perfect.
Modern processor chips have multiple
cores that execute streams of instruc-
tions in parallel; a programmer cannot
take full advantage of that parallelism
without thinking about lower-level de-
tails. Thus civilisation retreats a little.
Quantum computing, too, will surely
trespass on some abstraction barriers.

The Quantum Mystique
Abstraction barriers break down be-
cause computers are not abstractions. A
computing machine is a physical object,
which has to obey the laws of nature as
well as any rules of logic or mathemat-
ics that the designer wants to impose.
You can’t entirely ignore the physical
substrate—and that goes double for a
quantum computer.

The bits of a classical computer are
just binary digits, with a value of either

Brian Hayes is senior writer for American Scien-
tist. Additional material related to the Comput-
ing Science column can be found online at http://
bit-player.org. E-mail: brian@bit-player.org

Programming Your Quantum Computer

The hardware doesn’t yet exist, but languages for quantum coding are ready to go.

Brian Hayes

■ Computing Science

A warning from the abstraction police is post-
ed on a doorway at Harvard University.

2014 January–February 23www.americanscientist.org © 2014 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

0 or 1. Almost any device with two dis-
tinct states can serve to represent a clas-
sical bit: a switch, a valve, a magnet, a
coin. Qubits, partaking of the quantum
mystique, can occupy a superposition
of 0 and 1 states. What does that mean?
It’s not that the qubit can have an inter-
mediate value, such as 0.63; when the
state of the qubit is measured, the result
is always 0 or 1. But in the course of a
computation a qubit can act as if it were
a mixture of states—say, 63 percent 0
and 37 percent 1. Only a few physical
systems exhibit superposition clearly
enough to function as qubits. Examples
include photons with two directions of
polarization, atomic nuclei with two
spin orientations, and superconducting
loops with clockwise and counterclock-
wise electric currents.

Another key aspect of qubit behav-
ior is interference, a phenomenon well
known in the physics of waves. When
two waves overlap, they can either re-
inforce each other (if the peaks and
valleys of the undulations coincide) or
they can cancel (if the waves are out of
phase). Mathematically, the intensity
of the combined waves at any point is
given by the square of the sum of the
individual wave amplitudes. When
the two amplitudes have the same
sign, the interference is constructive;
when one amplitude is positive and
the other negative, the resulting de-
structive interference yields an inten-
sity less than that of either wave alone.

Like waves, the 0 and 1 states of
a qubit have amplitudes that can be
either positive or negative. (Actually,
the amplitudes are complex num-
bers, with real and imaginary parts,
but that complication can be ignored
here.) Depending on the signs of the
amplitudes, quantum interference can
either increase or decrease the prob-
ability that a specific state will be ob-
served when the qubit is measured.

Interference plays a role in all the
interesting algorithms for quantum
computers—that is, the algorithms
that might enable such a machine to
outperform a classical computer. The
general idea is to arrange the evolution
of the quantum system so that wrong
answers are suppressed by destructive
interference and right answers are en-
hanced by constructive interference. In
this way the algorithms exploit a form
of parallelism that’s unique to quan-
tum systems. In effect, a collection of
n qubits can explore all of its 2n pos-
sible configurations at once; a classical

system might have to look at the 2n bit
patterns one at a time.

One last aspect of quantum weird-
ness is entanglement. When two or
more qubits interact, they may form a
fused state that cannot be teased apart
to show the contributions of individu-
al qubits. In other words, you cannot
poke around inside a quantum register
and alter one qubit while leaving the
rest undisturbed. Entanglement is a
prerequisite for at least some of the
important quantum algorithms.

Among those algorithms, the best
known is a procedure for finding the
factors of integers, devised in 1994 by
Peter W. Shor, now at MIT. When fac-
toring an n-digit number, the fastest
known classical algorithms take an
amount of time that grows exponen-
tially with n; Shor’s algorithm works
in time proportional to n3. For large
enough n, the quantum algorithm is
far faster.

A Programmable Stovepipe
The prospect of greater computing
power in quantum systems is intrigu-
ing, but it comes with some awkward
constraints. To begin with, every func-
tion computed by a quantum system
must be fully reversible. If the machine
grinds up input A to produce output
B, then it must have a way to recon-
struct A when given B. A corollary is
that every function must have the same
number of inputs and outputs. In one
stroke, this rule outlaws most of arith-
metic as conventionally practiced. The
usual addition algorithm, for example,

is not reversible. You can add 3 and 4 to
get 7, but you can’t “unadd” 7 to recov-
er the original inputs 3 and 4. To add
reversibly, you must avoid erasures,
preserving enough information to re-
trace your steps. Reversible methods
exist for all computable functions, but
they require some mental adjustments
in one’s approach to problem solving.

Another no-no in quantum comput-
ing is copying a qubit. (This principle
is called the no-cloning theorem.) Nor
can you arbitrarily set or reset qubits
in the middle of a computation. At-
tempting to do so would destroy the
quantum superposition.

Taken together, the restrictions on
qubit operations imply that any quan-
tum program must have a stovepipe
architecture. Reversible quantum logic
gates are lined up in sequence, and in-
formation flows straight through them
from one end to the other. Of particu-
lar importance, the program structure
can have no loops, where control is
transferred backward to an earlier
point so that a sequence of instructions
is traversed multiple times.

Loops and conditional branching
are indispensable tools in classical
computer programming. How can we
possibly get along without them? Any-
one building a pure quantum comput-
er will have to confront this difficult
question. As a practical matter, how-
ever, the answer is: Don’t build a pure
quantum computer. Build a classical
computer with a quantum subsystem,
then create appropriate software for
each part. The quantum programming

operator dft(qureg q) {

 const n=#q;

 int i; int j;

 for i=0 to n-1 {

 for j=0 to i-1 {

 CPhase(2*pi/2^(i-j+1),

 q[n-i-1] & q[n-j-1]);

 }

 Mix(q[n-i-1]);

 }

 flip(q);

}

q
u
an

tu
m

o
p
er
at
io
n
s

cl
as

si
ca

l
it
er
at
io
n

name the operator dft (for discrete Fourier transform)
de�ne a quantum operator

the operator will act on a quantum register named q

number of qubits in q

classical variables for loop indices

outer loop

inner loop

reverse order of qubits

place qubit in state
of maximum superposition

conditional phase rotation

angle of phase rotation

rotate if state of these qubits is 11

A program for computing the discrete Fourier transform is written in the programming lan-
guage QCL. The language combines elements that require a classical—that is, nonquantum—
computer (pink) with operations that are unique to quantum processors (blue).

24 American Scientist, Volume 102 © 2014 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

languages QCL and Quipper both ac-
knowledge this reality, though in dif-
ferent ways.

The Imperative Mood
QCL, or Quantum Computation
Language, is the invention of Bern-
hard Ömer of the Vienna University
of Technology. He began the project
in 1998 and continues to extend and
refine it. Ömer’s interpreter for the
language (http://www.itp.tuwien.
ac.at/~oemer/qcl.html) includes an
emulator that runs quantum pro-
grams on classical hardware. Of
course the emulator can’t provide the
speedup of quantum parallelism; on
the other hand, it offers the program-
mer some helpful facilities—such as
commands for inspecting the internal
state of qubits—that are impossible
with real quantum hardware.

QCL borrows the syntax of lan-
guages such as C and Java, which are
sometimes described as “imperative”
languages because they rely on direct
commands to set and reset the val-
ues of variables. As noted, such com-
mands are generally forbidden within
a quantum computation, and so major
parts of a QCL program run only on
classical hardware. The quantum sys-
tem serves as an “oracle,” answering
questions that can be posed in a format
suitable for qubit computations. Each
query to the oracle must have the req-
uisite stovepipe architecture, but it can
be embedded in a loop in the outer,
classical context. During each iteration,
the quantum part of the computation
starts fresh and runs to completion.

An annotated snippet of code writ-
ten in QCL is shown in the illustra-
tion at the top of the previous page.
The procedure shown, which is taken
from a 2000 paper by Ömer, calculates
the discrete Fourier transform, a cru-
cial step in Shor’s factoring algorithm.

Fourier analysis resolves a waveform
into its constituent frequencies. In
Shor’s algorithm a number to be fac-
tored is viewed as a wavelike, peri-
odic signal. If N has the factors u and
v, then N consists of u repetitions of v
or v repetitions of u. Shor’s algorithm
uses quantum parallelism to search
for the period of such repetitions, al-
though the process is not as simple
and direct as this account might sug-
gest. The QCL program has a classi-
cal control structure, with two nested
loops, and a quantum section that per-
forms the actual Fourier transform.

A Functional Solution
The language called Quipper was de-
veloped in the past few years by Peter
Selinger of Dalhousie University in
Canada, with four colleagues. An imple-
mentation is available at http://www.
mathstat.dal.ca/~selinger/quipper/.

Quipper is intended for the same
kinds of programming tasks as QCL,
but it has a different structure and ap-

pearance. The language is implement-
ed as an extension of the programming
language Haskell (named for the logi-
cian Haskell B. Curry), which adopts
a functional rather than imperative
mode of expression. That is, the lan-
guage is modeled on the semantics of
mathematical functions, which map
inputs to outputs but have no side ef-
fects on the state of other variables.
A functional style of programming

seems more closely attuned to the
constraints of quantum computing, al-
though Haskell does not enforce the
quantum rule that a variable can be
assigned a value only once.

The Quipper system is a compiler
rather than an interpreter; it translates
a complete program all in one go rath-
er than executing statements one by
one. The output of the compiler con-
sists of quantum circuits: networks of
interconnected, reversible logic gates.
A circuit can take the form of a wiring
diagram, such as the one at the top of
this page, but it also constitutes a se-
quence of instructions ready to be ex-
ecuted by suitable quantum hardware
or a simulator.

I find it mildly ironic that these avant-
garde computers have brought us back
to the idea of seeing programs as cir-
cuits, in which signals flow through
long chains of gates. In the 1940s the
ENIAC computer was programmed in
a similar way, by plugging wires into
panels. But Selinger points out there’s

an important difference: We now have
tools (such as QCL and Quipper) that
generate the circuits automatically from
a high-level source text.

Selinger and his colleagues set out
to produce a practical, “scalable” sys-
tem, suitable for more than just toy
examples. They give solutions to
seven benchmark problems, measur-
ing the performance of their quantum
programs in terms of the number of

E
X

IT
: q

ft
_l

itt
le

_e
nd

ia
n

qs[3]

qs[2]

qs[1]

qs[0]

H

R(2pi/4)

R(2pi/8)

R(2pi/16)

H

R(2pi/4)

R(2pi/8)

H

R(2pi/4)H
E

N
T

E
R

: q
ft

_l
itt

le
_e

nd
ia

n

qs[0]

qs[1]

qs[2]

qs[3] 1

2

3

41

2

3

4

A circuit diagram for a quantum Fourier transform was generated by
the Quipper programming language. The algorithm is essentially the
same as the one specified in QCL on the preceding page. The horizon-
tal lines represent qubits acted on by reversible logic gates shown as

rectangular boxes. The H boxes are Hadamard gates, equivalent to the
Mix operator mentioned in the QCL program; the other rectangles are
phase-rotation gates. Blue and green labels show that the order of the
qubits is reversed by the transform; red labels are comments.

Any quantum program must have
a stovepipe architecture: Information

flows straight through.

2014 January–February 25www.americanscientist.org © 2014 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

qubits needed and the number of
gates in the circuits. They are able to
handle large problem instances. One
program requires 4,676 qubits and
30,189,977,982,990 gates. (They chose
not to draw the circuit diagram with
30 trillion gates.)

What to Compute
Languages such as QCL and Quipper
may well solve the problem of how
to write programs for quantum com-
puters. There remains the question
of what programs to write. Stephen
Jordan of the National Institutes of
Standards and Technology maintains
a “Quantum Algorithm Zoo” (http://
math.nist.gov/quantum/zoo/); it
lists 50 problems that have interest-
ing quantum solutions. That is not a
large number, although some of the
individual problems could have many
applications. One example that covers
a broad spectrum is the use of quan-
tum computation to simulate quantum
physics. This is where the whole field
began, with a suggestion 30 years ago
by Richard Feynman.

Of course all these questions re-
main academic until reliable, full-scale
quantum computers become available.
A company called D-Wave offers ma-
chines with up to 512 superconducting
qubits, but the architecture of that de-
vice is not suited to running the kinds
of programs generated by QCL and
Quipper; indeed, there’s controversy
over whether the D-Wave machine
should be called a quantum computer
at all. For technologies that can im-
plement quantum circuits with con-
trolled interference and entanglement,
the state of the art is roughly a dozen
qubits. With those resources, Shor’s
algorithm can factor the number 21.
Much work remains to be done before
my kiloqubit laptop arrives in 2024.

Bibliography
Bacon, D., and W. van Dam. 2010. Recent prog-

ress in quantum algorithms. Communica-
tions of the ACM 53(2):84–93.

Green, A. S., P. L. Lumsdaine, N. J. Ross, P.
Selinger, and B. Valiron. 2013. Quipper: A
scalable quantum programming language.
ACM SIGPLAN Notices 48(6):333–342.

Green, A. S., P. L. Lumsdaine, N. J. Ross, P.
Selinger, and B. Valiron. 2013. An introduc-
tion to quantum programming in Quip-
per. In Proceedings of the 5th Conference on
Reversible Computation, Victoria, Canada,
pp. 110–124.

Ömer, B. 2003. Structured Quantum Program-
ming. Doctoral dissertation, Vienna Uni-
versity of Technology. http://tph.tuwien.
ac.at/~oemer/doc/structquprog.pdf.

