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The year is 2024, and I have just 
brought home my first quan-
tum computer. When I plug 
it in and switch it on, the ma-

chine comes to life with a soft, breathy 
whisper from the miniature cryogenic 
unit. A status screen tells me I have 
at my disposal 1,024 qubits, or quan-
tum bits, offering far more potential 
for high-speed calculation than all the 
gigabits and terabytes of a convention-
al computer. So I sit down to write my 
first quantum program.

And that’s where I get stuck every 
time I run through this daydream. I 
know a little about the basic principles 
of quantum computation, but I’ve nev-
er had a clear vision of what it would 
be like to write and run programs on a 
quantum computer. Can I express my 
ideas in a familiar programming lan-
guage, with all the usual algorithmic 
idioms, such as loops and if-then-else 
statements? Or is the experience going 
to be completely new and alien—like 
quantum mechanics itself?

Most of what I’ve read tends to sup-
port the new-and-alien thesis. The 
protocol for solving a problem with a 
quantum computer is often described 
like this: Prepare a set of qubits in a 
suitable initial state, apply a specified 
series of operations, then measure 
the final state of the qubits. If all goes 
well, the measurement will yield the 
answer to the problem. To me, this 
process doesn’t sound like computer 
programming; it sounds like running 
a physics experiment. I yearn for some 
other way of describing the computa-
tion, closer to my accustomed habits 
of thought.

Evidently I am not alone in this sen-
timent. Several high-level program-
ming languages for quantum comput-
ers have been developed, even though 
the computers themselves don’t yet 
exist. I have been exploring two of 
these languages, QCL and Quipper, 
which are surprisingly rich and full-
featured. The languages provide a 
glimpse of how programming might 
be done when my kiloqubit computer 
finally arrives. 

Abstracted to Distraction
My complaint that quantum computa-
tion seems too much like a laboratory 
experiment is a little unfair. Classical 
computing has the same complexion 
if you examine it closely enough. Add-
ing a column of numbers in a spread-
sheet could be described as preparing 
a set of bits in the appropriate initial 
state, applying the summation opera-
tor, and measuring the final state of the 
bits. But no one thinks of the process in 
those primitive terms.

Computer science has evolved a hi-
erarchy of conceptual layers that hide 
the details of layers below them. At 
the bottom are physical entities such 
as transistors and electronic circuitry. 
Next come logic gates (AND, OR, etc.), 
which operate on symbols (true and 
false, 0 and 1) rather than voltages and 
currents. The gates are assembled into 
registers, adders, and the like; then an 
instruction set defines commands for 
manipulating data within these com-
ponents. Finally, the details of the in-
struction set are hidden by the con-
structs of a higher-level programming 
language: procedures, iterations, ar-
rays, lists, and so on.

Creating complex software would be 
beyond human abilities without the ab-
straction barriers that separate these lay-
ers. It’s just not possible to think about 

the design of a large program in terms of 
electric currents flowing through billions 
of transistors. As Alfred North White-
head wrote, “Civilisation advances by 
extending the number of important op-
erations which we can perform without 
thinking about them.”

But the barriers are seldom perfect. 
Modern processor chips have multiple 
cores that execute streams of instruc-
tions in parallel; a programmer cannot 
take full advantage of that parallelism 
without thinking about lower-level de-
tails. Thus civilisation retreats a little. 
Quantum computing, too, will surely 
trespass on some abstraction barriers.

The Quantum Mystique
Abstraction barriers break down be-
cause computers are not abstractions. A 
computing machine is a physical object, 
which has to obey the laws of nature as 
well as any rules of logic or mathemat-
ics that the designer wants to impose. 
You can’t entirely ignore the physical 
substrate—and that goes double for a 
quantum computer.

The bits of a classical computer are 
just binary digits, with a value of either 
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0 or 1. Almost any device with two dis-
tinct states can serve to represent a clas-
sical bit: a switch, a valve, a magnet, a 
coin. Qubits, partaking of the quantum 
mystique, can occupy a superposition 
of 0 and 1 states. What does that mean? 
It’s not that the qubit can have an inter-
mediate value, such as 0.63; when the 
state of the qubit is measured, the result 
is always 0 or 1. But in the course of a 
computation a qubit can act as if it were 
a mixture of states—say, 63 percent 0 
and 37 percent 1. Only a few physical 
systems exhibit superposition clearly 
enough to function as qubits. Examples 
include photons with two directions of 
polarization, atomic nuclei with two 
spin orientations, and superconducting 
loops with clockwise and counterclock-
wise electric currents.

Another key aspect of qubit behav-
ior is interference, a phenomenon well 
known in the physics of waves. When 
two waves overlap, they can either re-
inforce each other (if the peaks and 
valleys of the undulations coincide) or 
they can cancel (if the waves are out of 
phase). Mathematically, the intensity 
of the combined waves at any point is 
given by the square of the sum of the 
individual wave amplitudes. When 
the two amplitudes have the same 
sign, the interference is constructive; 
when one amplitude is positive and 
the other negative, the resulting de-
structive interference yields an inten-
sity less than that of either wave alone. 

Like waves, the 0 and 1 states of 
a qubit have amplitudes that can be 
either positive or negative. (Actually, 
the amplitudes are complex num-
bers, with real and imaginary parts, 
but that complication can be ignored 
here.) Depending on the signs of the 
amplitudes, quantum interference can 
either increase or decrease the prob-
ability that a specific state will be ob-
served when the qubit is measured.

Interference plays a role in all the 
interesting algorithms for quantum 
computers—that is, the algorithms 
that might enable such a machine to 
outperform a classical computer. The 
general idea is to arrange the evolution 
of the quantum system so that wrong 
answers are suppressed by destructive 
interference and right answers are en-
hanced by constructive interference. In 
this way the algorithms exploit a form 
of parallelism that’s unique to quan-
tum systems. In effect, a collection of 
n qubits can explore all of its 2n pos-
sible configurations at once; a classical 

system might have to look at the 2n bit 
patterns one at a time.

One last aspect of quantum weird-
ness is entanglement. When two or 
more qubits interact, they may form a 
fused state that cannot be teased apart 
to show the contributions of individu-
al qubits. In other words, you cannot 
poke around inside a quantum register 
and alter one qubit while leaving the 
rest undisturbed. Entanglement is a 
prerequisite for at least some of the 
important quantum algorithms.

Among those algorithms, the best 
known is a procedure for finding the 
factors of integers, devised in 1994 by 
Peter W. Shor, now at MIT. When fac-
toring an n-digit number, the fastest 
known classical algorithms take an 
amount of time that grows exponen-
tially with n; Shor’s algorithm works 
in time proportional to n3. For large 
enough n, the quantum algorithm is 
far faster.

A Programmable Stovepipe
The prospect of greater computing 
power in quantum systems is intrigu-
ing, but it comes with some awkward 
constraints. To begin with, every func-
tion computed by a quantum system 
must be fully reversible. If the machine 
grinds up input A to produce output 
B, then it must have a way to recon-
struct A when given B. A corollary is 
that every function must have the same 
number of inputs and outputs. In one 
stroke, this rule outlaws most of arith-
metic as conventionally practiced. The 
usual addition algorithm, for example, 

is not reversible. You can add 3 and 4 to 
get 7, but you can’t “unadd” 7 to recov-
er the original inputs 3 and 4. To add 
reversibly, you must avoid erasures, 
preserving enough information to re-
trace your steps. Reversible methods 
exist for all computable functions, but 
they require some mental adjustments 
in one’s approach to problem solving.

Another no-no in quantum comput-
ing is copying a qubit. (This principle 
is called the no-cloning theorem.) Nor 
can you arbitrarily set or reset qubits 
in the middle of a computation. At-
tempting to do so would destroy the 
quantum superposition. 

Taken together, the restrictions on 
qubit operations imply that any quan-
tum program must have a stovepipe 
architecture. Reversible quantum logic 
gates are lined up in sequence, and in-
formation flows straight through them 
from one end to the other. Of particu-
lar importance, the program structure 
can have no loops, where control is 
transferred backward to an earlier 
point so that a sequence of instructions 
is traversed multiple times.

Loops and conditional branching 
are indispensable tools in classical 
computer programming. How can we 
possibly get along without them? Any-
one building a pure quantum comput-
er will have to confront this difficult 
question. As a practical matter, how-
ever, the answer is: Don’t build a pure 
quantum computer. Build a classical 
computer with a quantum subsystem, 
then create appropriate software for 
each part. The quantum programming 

operator dft(qureg q) {

  const n=#q;

  int i; int j;

  for i=0 to n-1 {

    for j=0 to i-1 {

      CPhase(2*pi/2^(i-j+1),

          q[n-i-1] & q[n-j-1]);

    }         

    Mix(q[n-i-1]);

  }

  flip(q);

}
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name the operator dft (for discrete Fourier transform)
de�ne a quantum operator

the operator will act on a quantum register named q

number of qubits in q

classical variables for loop indices

outer loop

inner loop

reverse order of qubits

place qubit in state 
of maximum superposition

conditional phase rotation

angle of phase rotation

rotate if state of these qubits is 11

A program for computing the discrete Fourier transform is written in the programming lan-
guage QCL. The language combines elements that require a classical—that is, nonquantum—
computer (pink) with operations that are unique to quantum processors (blue).
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languages QCL and Quipper both ac-
knowledge this reality, though in dif-
ferent ways.

The Imperative Mood
QCL, or Quantum Computation 
Language, is the invention of Bern-
hard Ömer of the Vienna University 
of Technology. He began the project 
in 1998 and continues to extend and 
refine it. Ömer’s interpreter for the 
language (http://www.itp.tuwien.
ac.at/~oemer/qcl.html) includes an 
emulator that runs quantum pro-
grams on classical hardware. Of 
course the emulator can’t provide the 
speedup of quantum parallelism; on 
the other hand, it offers the program-
mer some helpful facilities—such as 
commands for inspecting the internal 
state of qubits—that are impossible 
with real quantum hardware.

QCL borrows the syntax of lan-
guages such as C and Java, which are 
sometimes described as “imperative” 
languages because they rely on direct 
commands to set and reset the val-
ues of variables. As noted, such com-
mands are generally forbidden within 
a quantum computation, and so major 
parts of a QCL program run only on 
classical hardware. The quantum sys-
tem serves as an “oracle,” answering 
questions that can be posed in a format 
suitable for qubit computations. Each 
query to the oracle must have the req-
uisite stovepipe architecture, but it can 
be embedded in a loop in the outer, 
classical context. During each iteration, 
the quantum part of the computation 
starts fresh and runs to completion.

An annotated snippet of code writ-
ten in QCL is shown in the illustra-
tion at the top of the previous page. 
The procedure shown, which is taken 
from a 2000 paper by Ömer, calculates 
the discrete Fourier transform, a cru-
cial step in Shor’s factoring algorithm. 

Fourier analysis resolves a waveform 
into its constituent frequencies. In 
Shor’s algorithm a number to be fac-
tored is viewed as a wavelike, peri-
odic signal. If N has the factors u and 
v, then N consists of u repetitions of v 
or v repetitions of u. Shor’s algorithm 
uses quantum parallelism to search 
for the period of such repetitions, al-
though the process is not as simple 
and direct as this account might sug-
gest. The QCL program has a classi-
cal control structure, with two nested 
loops, and a quantum section that per-
forms the actual Fourier transform.

A Functional Solution
The language called Quipper was de-
veloped in the past few years by Peter 
Selinger of Dalhousie University in 
Canada, with four colleagues. An imple-
mentation is available at http://www.
mathstat.dal.ca/~selinger/quipper/.

Quipper is intended for the same 
kinds of programming tasks as QCL, 
but it has a different structure and ap-

pearance. The language is implement-
ed as an extension of the programming 
language Haskell (named for the logi-
cian Haskell B. Curry), which adopts 
a functional rather than imperative 
mode of expression. That is, the lan-
guage is modeled on the semantics of 
mathematical functions, which map 
inputs to outputs but have no side ef-
fects on the state of other variables. 
A functional style of programming 

seems more closely attuned to the 
constraints of quantum computing, al-
though Haskell does not enforce the 
quantum rule that a variable can be 
assigned a value only once.

The Quipper system is a compiler 
rather than an interpreter; it translates 
a complete program all in one go rath-
er than executing statements one by 
one. The output of the compiler con-
sists of quantum circuits: networks of 
interconnected, reversible logic gates. 
A circuit can take the form of a wiring 
diagram, such as the one at the top of 
this page, but it also constitutes a se-
quence of instructions ready to be ex-
ecuted by suitable quantum hardware 
or a simulator.

I find it mildly ironic that these avant-
garde computers have brought us back 
to the idea of seeing programs as cir-
cuits, in which signals flow through 
long chains of gates. In the 1940s the 
ENIAC computer was programmed in 
a similar way, by plugging wires into 
panels. But Selinger points out there’s 

an important difference: We now have 
tools (such as QCL and Quipper) that 
generate the circuits automatically from 
a high-level source text.

Selinger and his colleagues set out 
to produce a practical, “scalable” sys-
tem, suitable for more than just toy 
examples. They give solutions to 
seven benchmark problems, measur-
ing the performance of their quantum 
programs in terms of the number of 
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A circuit diagram for a quantum Fourier transform was generated by 
the Quipper programming language. The algorithm is essentially the 
same as the one specified in QCL on the preceding page. The horizon-
tal lines represent qubits acted on by reversible logic gates shown as 

rectangular boxes. The H boxes are Hadamard gates, equivalent to the 
Mix operator mentioned in the QCL program; the other rectangles are 
phase-rotation gates. Blue and green labels show that the order of the 
qubits is reversed by the transform; red labels are comments.

Any quantum program must have 
a stovepipe architecture: Information 

flows straight through.
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qubits needed and the number of 
gates in the circuits. They are able to 
handle large problem instances. One 
program requires 4,676 qubits and 
30,189,977,982,990 gates. (They chose 
not to draw the circuit diagram with 
30 trillion gates.)

What to Compute
Languages such as QCL and Quipper 
may well solve the problem of how 
to write programs for quantum com-
puters. There remains the question 
of what programs to write. Stephen 
Jordan of the National Institutes of 
Standards and Technology maintains 
a “Quantum Algorithm Zoo” (http://
math.nist.gov/quantum/zoo/); it 
lists 50 problems that have interest-
ing quantum solutions. That is not a 
large number, although some of the 
individual problems could have many 
applications. One example that covers 
a broad spectrum is the use of quan-
tum computation to simulate quantum 
physics. This is where the whole field 
began, with a suggestion 30 years ago 
by Richard Feynman.

Of course all these questions re-
main academic until reliable, full-scale 
quantum computers become available. 
A company called D-Wave offers ma-
chines with up to 512 superconducting 
qubits, but the architecture of that de-
vice is not suited to running the kinds 
of programs generated by QCL and 
Quipper; indeed, there’s controversy 
over whether the D-Wave machine 
should be called a quantum computer 
at all. For technologies that can im-
plement quantum circuits with con-
trolled interference and entanglement, 
the state of the art is roughly a dozen 
qubits. With those resources, Shor’s 
algorithm can factor the number 21. 
Much work remains to be done before 
my kiloqubit laptop arrives in 2024.
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