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At the police station two sus-
pects are questioned in sep-
arate rooms. Whoever talks 
first gets the better deal, the 

detective tells them. But they know 
that if they both keep quiet, they might 
beat the rap.

Television scriptwriters have drawn 
on this situation for countless plots. 
Game theorists have seized on it, too, 
but theirs is a more abstract and aus-
tere art form. They strip away the 
grimy crime-story details, leaving a 
formalized contest known as the Pris-
oner’s Dilemma. Gone is the threat of 
jail time; the game is played for points. 
Each player must choose either to co-
operate (stay silent) or to defect (con-
fess) and must make the choice before 
learning the other’s decision. If both 
players cooperate (cc), they earn three 
points each; if both defect (dd), they 
get just one point. If one player defects 
and the other cooperates (cd or dc), the 
defector receives five points and the 
hapless cooperator gets nothing.

A player devising a strategy for 
this game might reason as follows. “If 
my opponent cooperates, I’m better 
off defecting: I get five points rather 
than three. If my opponent defects, I 
still gain by defecting—one point ver-
sus none. Defection wins either way.” 
Of course the other player reaches the 
same conclusion. Thus they both wind 
up with a paltry single point, even 
though they know they could have got-
ten three points by mutual cooperation.

In a single game against a player 
you’ll never meet again, there’s no es-
cape from this doleful logic. But the op-
tions are more complicated in Iterated 

Prisoner’s Dilemma (IPD), where you 
play a long series of games against the 
same opponent. The repeated encoun-
ters favor cooperative strategies that 
benefit both parties. A further refine-
ment adds a Darwinian element to the 
game, with a population of players 
whose average scores determine their 
fitness and hence their probability of 
survival. In this case, too, cooperation 
can pay off.

Prisoner’s Dilemma has been a sub-
ject of inquiry for more than 60 years, 
not just by game theorists but also by 
psychologists, economists, political sci-
entists, and evolutionary biologists. Yet 
the game has not given up all its secrets. 
A startling discovery last year revealed a 
whole new class of strategies, including 
some bizarre ones. For example, over 
a long series of games one player can 
unilaterally dictate the other player’s 
score (within a certain range). Or a crafty 
player can control the ratio of the two 
scores. But not all the new strategies are 
so manipulative; some are “generous” 
rules that elicit cooperation and thereby 
excel in an evolutionary context.

Tit-for-Tat
As a human predicament, Prisoner’s 
Dilemma is surely ancient, but as a for-
mal game it was invented in 1950 by 
Merrill M. Flood and Melvin Dresher 
of the RAND Corporation. Interested 
in how human subjects deal with situ-
ations of conflict, they recruited two 
colleagues to play 100 matches in quick 
succession. Without any prearranged 
strategy, the players achieved mutual 
cooperation in 60 percent of the games.

A decade later Anatol Rapoport, a 
mathematician and psychologist at 
the University of Michigan, under-
took further experiments and analysis. 
Then in the 1980s Robert Axelrod, also 
of Michigan, organized a series of IPD 

tournaments for computer programs. 
The big winner was one of the sim-
plest strategies, called tit-for-tat, sub-
mitted by Rapoport. A tit-for-tat player 
always cooperates in the first round 
of a match and thereafter echoes the 
opponent’s previous move. Thus co-
operation is rewarded with continued 
cooperation, and defection is punished 
by reciprocal defection.

Tit-for-tat is not an optimal strategy  
in the mathematical sense—guaranteed 
to prevail over all comers. As a matter of 
fact, it can never outscore an opponent; 
it always plays for a tie. Nevertheless, tit-
for-tat performs remarkably well against 
a wide variety of other strategies. From 
the success of this simple rule Axelrod 
extracts some lessons for IPD players: 
Never be the first to defect; retaliate im-
mediately when betrayed; relent after a 
single cycle of punishment.

Short-Term Memory
Last year’s big surprise in Prisoner’s 
Dilemma research came from two dis-
tinguished polymaths. William H. Press 
of the University of Texas at Austin be-
gan his career as an astrophysicist, be-
came expert in numerical methods of 
computation, and in recent years has 
turned his attention to problems in bi-
ology. Freeman J. Dyson of the Institute 
for Advanced Study in Princeton is re-
nowned as a physicist, mathematician, 
author, visionary, and all-around deep 
thinker. The story of how Press and 
Dyson came to make their discovery is 
almost as interesting as the result itself, 
but I have room here only for the latter.

Press and Dyson studied IPD strate-
gies in which the next move depends 
only on the immediately preceding 
round of play, ignoring all earlier his-
tory. It might seem that players with a 
longer memory would have an advan-
tage against such forgetful opponents, 
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but it turns out the “shortest-memory 
player sets the rules of the game.” Sup-
pose your opponent has a “memory-
one” strategy, but you base your moves 
on a deeper history—perhaps the past 
10 or 100 plays. Press and Dyson show 
that there is a memory-one strategy that 
would have exactly the same effect on 
your opponent.

Every round of play in Prisoner’s 
Dilemma has four possible outcomes: 
cc, cd, dc, and dd. A memory-one strate-
gy is a list of four numbers that specify 
a player’s probability of cooperating 
following each of these events. For 
example, the tit-for-tat strategy is en-
coded in the sequence of probabilities 
(1, 0, 1, 0): always cooperate after cc 
or dc, always defect after cd or dd. An-
other interesting strategy, nicknamed 
Pavlov, has the signature (1,  0,  0,  1): 
cooperate when you and your oppo-
nent have made the same choice (cc 
or dd), defect when you differed on 
the previous move (cd or dc). Both of 
these strategies are deterministic, with 
all probabilities either 0 or 1, but that’s 
not necessary. The strategy (½, ½, ½, ½) 
describes a player who chooses moves 
completely at random.

Given any two strategies, a computer 
program can simulate an IPD match 
between the players, keeping track of 
how often each outcome (cc, cd, etc.) ap-
pears in the results. With a long enough 

run, these frequencies converge to a 
“stationary state,” which represents 
the expected outcome of the match. A 
handy property of memory-one strate-
gies is that it’s not actually necessary to 
run such a program; the stationary state 
can be calculated directly, without trac-
ing through the game move by move. 
This shortcut makes it easy to explore 
a wide spectrum of game strategies. 

Press and Dyson were doing just 
that when they noticed something 
odd: There are memory-one IPD strat-
egies that allow you to seize complete 
control over your opponent’s score. 
Superficially, such a strategy looks like 
any other—it is encoded in a fixed set 
of four probabilities—but the strategy 
makes for a strangely one-sided game, 
where a player’s actions have no effect 
on his or her own score.

The one-sided rules are members 
of a newly recognized class of strat-
egies that Press and Dyson call zero-
determinant strategies. The name re-
flects the line of reasoning that led to 
the discovery—the strategies appear 
when the determinant of a certain 
matrix of probabilities is set to zero—
but this fact is not especially helpful 
in understanding how the strategies 
work. What sets them apart from other 
memory-one strategies is the presence 
of certain algebraic relations between 
the four probabilities. For example, in 

one subset of zero-determinant strate-
gies only the probabilities for cc and dd 
events are freely chosen; they then de-
termine the cd and dc probabilities. As 
a result of such dependencies the sta-
tionary state of the game is controlled 
entirely by one player’s strategy, with-
out any input from the opponent. This 
is a situation that “allows much mis-
chief,” Press and Dyson write.

Dictators and Extortionists
One mischievous strategy might be 
called the dictator: It unilaterally sets 
the other player’s long-term average 
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score to any value between the mutual-
defection payment and the mutual-co-
operation payment. (For the standard 
payoff values 0, 1, 3, 5, that means any-
where between 1 and 3.)

Consider the strategy (4⁄5, 2⁄5, 2⁄5, 1⁄5), 
where the four numbers again indicate 
the probability of choosing to cooper-
ate after cc, cd, dc, dd, respectively. If Y 
plays this strategy against X, then X’s 
average score per round will converge 
on the value 2.0 after a sufficiently 
long series of games, no matter what 
strategy X chooses to play. In the lower 
illustration on the previous page X re-
sponds to Y’s coercion with four dif-
ferent strategies, but in each case X’s 
average score gravitates ineluctably to-
ward 2.0. It should be emphasized that 
dictating X’s score does not require 
Y to make any active adjustments or 
responses as the game proceeds. Y can 
set the four probabilities and then “go 
to lunch,” as Press and Dyson put it.

A second form of mischief manipu-
lates the ratio between X’s score and 
Y’s score. If SX and SY are the players’ 
long-term average scores, the strategy 
allows Y to enforce the linear relation 
SY = 1 + M(SX – 1), where M is an ar-
bitrary constant greater than 1. X has 
the option of playing an always-defect 
strategy, which consigns both players 
to the minimal payoff of one point per 
round. But if X takes any steps to im-
prove this return, every increment to 
SX will increase SY by M times as much. 
Press and Dyson call the technique 
extortion. As an example they cite the 
strategy (11⁄13, 1⁄2, 7⁄26, 0), which sets 
M = 3. If Y adopts this rule, X can play 

always-defect (or tit-for-tat) to limit 
both players to one point per round. 
When X chooses other strategies, how-
ever, Y comes out ahead. If X plays 
Pavlov, the scores are approximately 
SX = 1.46 and SY = 2.36. To maximize his 
or her score, X must cooperate uncon-
ditionally, earning an average of 1.91 
points, but then Y gets 3.73 points.

The discovery of dictatorial and ex-
tortionate strategies came as a great 
surprise, and yet there were prec-
edents. Aspects of the discovery were 
anticipated in the 1990s by Maarten 

C. Boerlijst, Martin A. Nowak, and 
Karl Sigmund. Moreover, not all of 
the zero-determinant strategies are ex-
otic ideas that no one ever thought of 
trying. Tit-for-tat, the most famous of 
all IPD rules, is in fact an extortion-
ate zero -determinant strategy. It sets 
M = 1, forcing equality of scores.

Watching the coercive strategies 
in action (or playing against them), I 
can’t help feeling there is something 
uncanny going on. In a game whose 
structure is fully symmetrical, how can 
one contestant wield such power over 
the other? In the case of the dictato-
rial strategies, the symmetry isn’t so 

much broken as transformed: When I 
take control of your score, I lose control 
of my own; although there’s nothing 
you can do to alter your own score, you 
have the power to set mine.

The extortionate strategies can’t be 
explained away so easily. There really 
is an asymmetry, with one player grab-
bing an unfair share of the spoils, and 
the only defense is to retreat to the poli-
cy of universal defection that leaves ev-
eryone impoverished. IPD seems to be 
back in the same dreary jail cell where 
it all began.

Darwinian Dilemmas
One possible escape is to put the game 
in the larger context of evolutionary 
biology, where Prisoner’s Dilemma of-
fers a framework for understanding 
how cooperation might arise in an en-
vironment that seems to reward only 
selfishness. The Darwinian mechanism 
“closes the loop” on the game: Each 
agent’s probability of success or fail-
ure depends on the composition of the 
entire pool of players, but the compo-
sition of that pool depends in turn on 
which players succeed and fail.

Soon after the Press-Dyson re-
port appeared, Christoph Adami 
and Arend Hintze of Michigan 
State University tested various zero-
determinant strategies in an evolution-
ary simulation. The coercive strategies 
did well against certain opponents, 

but eventually they were displaced by 
other players, most notably Pavlov. The 
reason is that a “nasty” player can be-
come a victim of its own success. The 
reward for winning in an evolutionary 
game is to become more common in 
the population, with the result that you 
encounter more members of your own 
species. Dictators and extortionists do 
not thrive in that environment. Thus 
Adami and Hintze concluded that zero-
determinant strategies are unlikely to 
evolve in the wild.

But this is not the end of the story. It 
turns out that not all zero-determinant 
strategies are weapons wielded by 
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brutes and bullies. Alexander J. Stew-
art and Joshua B. Plotkin of the Uni-
versity of Pennsylvania have identified 
a set of “generous” zero-determinant 
players that form a mirror image to the 
extortionate ones. An extorter tries to 
claim more than his or her fair share,  
but when this gambit fails must accept 
the low payoff for mutual defection. 
A generous player offers to accept less 
than a fair share of the average pay-
off as an inducement to mutual coop-
eration. In other words, the generous 
player is willing to be a patsy if that’s 
what it takes to secure cooperation. 

Generous behavior might seem like 
a maladaptive invitation to abuse, 
but Stewart and Plotkin found oth-
erwise. In a series of evolutionary 
experiments, the generous subset of 
zero-determinant strategies were the 
dominant species in all contests ex-
cept those with a very small popula-
tion (fewer than about 10 individuals). 
Stewart and Plotkin went on to prove 
that generosity is a “robust” strategy, 
able to establish itself and proliferate 
in a diverse population and then re-
pel invasion attempts by others. Ap-
parently it pays to put up with a little 
unfairness if that leads to greater op-
portunities for beneficial cooperation.

Is that the moral of the story? The 
players of these games are very simple 
and mechanistic; they are algorithms, 
not personalities. Nevertheless, it’s 
hard to resist giving them value-laden 
labels such as “extortionate” or “gen-
erous.” Axelrod’s analysis of tit-for-tat 
clearly echoes the fundamental princi-
ple of lex talionis: take an eye for an eye 
(but no more than that). The evolution-
ary results of Stewart and Plotkin hint 
at a new dispensation: Mercy is greater 
than justice.

Bibliography
Adami, C., and A. Hintze. 2012. Evolutionary 

instability of zero-determinant strategies 
demonstrates that winning is not every-
thing. Nature Communications 4:2193.

Axelrod, R. 1984, 2006. The Evolution of Coop-
eration. New York: Basic Books.

Boerlijst, M. C., M. A. Nowak, and K. Sig-
mund. 1997. Equal pay for all prisoners. 
American Mathematical Monthly 104:303–305.

Press, W. H., and F. J. Dyson. 2012. Iterated 
prisoner’s dilemma contains strategies that 
dominate any evolutionary opponent. Pro-
ceedings of the National Academy of Sciences of 
the U.S.A. 109:10409–10413.

Stewart, A. J., and J. B. Plotkin. 2013. From ex-
tortion to generosity, the evolution of zero-
determinant strategies in the prisoner’s di-
lemma. Proceedings of the National Academy 
of Sciences of the U.S.A. 110:15348–15353.


